
College of Marine Life Sciences

2017.06.16

The College was established in 1930.

ife Sciences Major Setting Related Colleges

Doctoral and Master's Degree Programs in

Biology

Aquaculture

Food Sciences and Engineering

Pharmacology

Main Courses for "Marine Biology"

Botany

Zoology

Microbiology

Marine Biology

Marine Ecology

Biodiversity

Anatomy & Phylogenetics

Histology and Embryology

Developmental Biology

Human & Animal Physiology

Plant Physiology

General Immunology

Cell Biology

Genetics

Molecular Biology

Mathematics

Physics

Biostatistics

Inorganic & Analytical Chemistry

Organic Chemistry

Biochemistry

Oceanography

Gene Engineering

Cell Engineering

Microbial Engineering

Modern Biotechnology

Genomics

Bioinformatics

Faculty, Staff and Students

128 Faculty members and staff

37 Professors

34 Associate professors

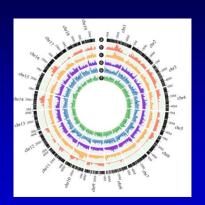
About 1300 students

500 graduate students

700 undergraduate students

In the past 5 years

- Ca. 350 New Projects
- Funds: 170 million yuan
- 900 Academic Papers, 11 Books
- 140 Authorized Patents
- ESI 1%: Plants & Zoology; Biology & Biochemistry; Environment &E cology



Main Research Areas

- Genetics and breeding of farmed species fish, shellfish, crustacean, seaweed
- Developmental biology and Evolution
- Cell and tissue engineering
- Marine natural products and biomaterials
- ➤ Marine Ecology
- Biological Oceanography

I. Genetics and Breeding of Farmed Species

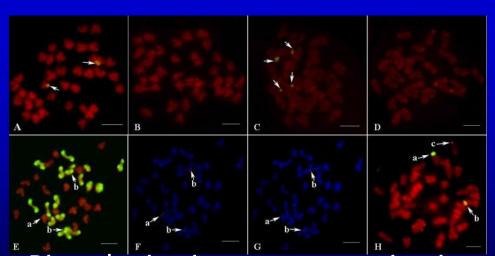
nature ecology & evolution

ARTICLES

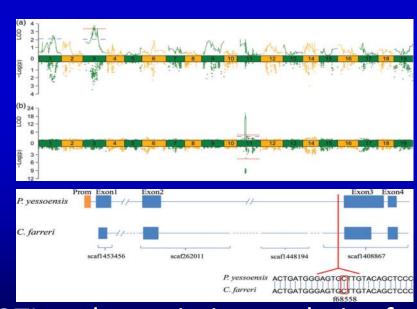
PUBLISHED: 3 APRIL 2017 | VOILLIME: 1 ARTICLES OND

OPEN

Scallop genome provides insights into evolution of bilaterian karyotype and development

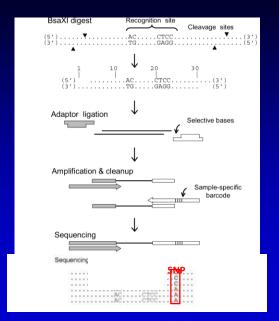

Shi Wang¹¹, Jinbo Zhang¹¹, Wenqian Jiso¹, Ji Li¹, Xiaogang Xun¹, Yan Sun¹, Ximing Guo⁴, Pin Huan², Bo Dong¹, Lingling Zhang', Xiaoli Hu¹, Xiaoqing Sun², Jing Wang', Chengtian Zhao², Yangfan Wang', Dawei Wang', Xiaoting Huang', Ruljia Wang', Jia Lu¹, Yuli Li¹, Zhifeng Zhang', Baozhong Liu², Wei Lu¹, Yuanyuan Hui², Jun Liang², Zunchun Zhou², Rui Hou¹, Xue Li¹, Yunchao Liu², Hengde Li¹⁰, Xianhui Ning', Yu Lin², Liang Zhao², Qiang Xing', Jinzhuang Dou¹, Yanghig Dou¹, Yanghig Li¹, Junxia Mao², Haobing Guo³, Huaiqian Dou¹, Tianqi Li², Chuang Mu³, Wenkai Jiang³, Qiang Fu³, Xiaoteng Fu³, Yan Miao³, Jian Liu², Qian Yu³, Ruojiao Li¹, Huan Liao³, Xuan Li³, Yifan Kong³, Zhi Jiang³, Daniel Chourouti⁸, Ruiqiang Li²¹ and Zhenmin Bao³*

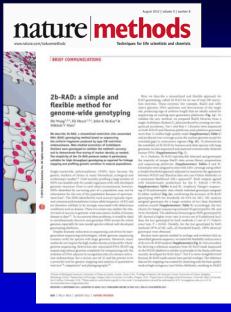
Reconstructing the genomes of bilaterian ancestors is central to our understanding of animal evolution, where knowledge from ancient and/or slow-evolving bilaterian lineages is civiled. Here we report a high-quality, chomensome-anchered reference genome for the scallop Patitopector pessonesis, a bivalve moluse that has a slow-evolving genome with many ancestral features. Chromosome-based macrosyntry analysis reveals a striling correspondence between the '0' scallog promosomes and the '17 presumed ancentral bilaterian linkage groups at a level of conservation previously unseen, suggesting that the scalling may have a leasytype close to that of the bilaterian ancestor. Scallop from gene expression follows a new mode of subclusted temporal ce-linearity that is possibly ancestral and may provide great potential in supporting diverse bilaterian body plant Transcriptions analysis of valued no made ones find the unevented diversity in photetraporative or scales and an absorbital


Dean
Prof. Zhenmin Bao
zmbao@ouc.edu.cn

Scallop Genome evolution Nture Ecology & Evolution 1, 0120 (2017)

Biased mitotic gene conversion in hybrid scallop

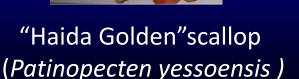

BMC Evolutionary Biology, 10:6



QTL and association analysis of scallop traits

DNA Research, 21:85-101

Genomic tools for whole genome scan in non-model aquatic organisms



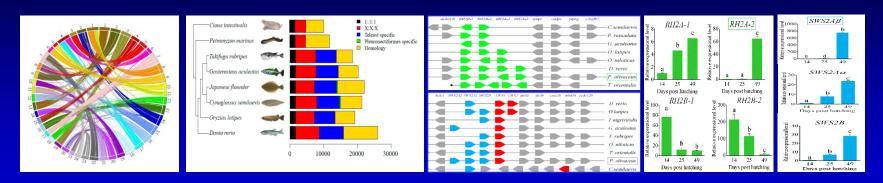
2b-RAD and RAD typing: efficient genotyping tools for whole genome scanning. Nature Methods, 9:808-810, 2012; Nature Protocols, 12, 279–288 (2017)

"Penglaihong II" (Chlamys farreri)

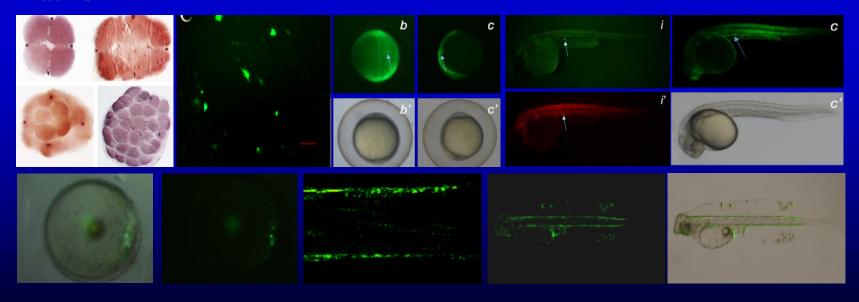
2. Fish Genetics and Breeding Technology

Research Interests

- Genetics and genetic breeding of farmed marine fishes.
- Molecular mechanism of sex determination in fish.
- Embryonic Stem Cells (ESC) and Germ Stem Cells (GSCs) of flounder.
 - ----Identification and transplantation for surrogate reproduction


Prof. Quanqi Zhang

Email: qzhang@ouc.edu.cn


Tel: 0532-82031806

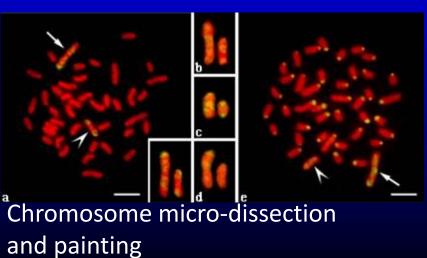
The Haploid Genome Reveals Visual System Adaptation to The Benthic Life Style in Japanese Flounder

Identification and interspecific transplantation of PGCs in flatfish

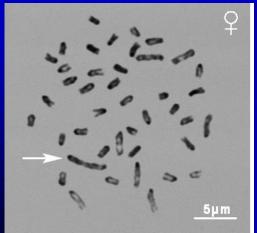
Genetics and breeding of flounder

- Transcriptomic analysis
- QTLs analysis, high density map construction over 5800 SNPs

Whole female breeding



Normal family



All female family

Sex control of Sole

Molecular mechanism of sex determination

Identification and transgenic of ESC and GSC

3. Seaweed Genetics and Breeding

biodiversity of macroalgae

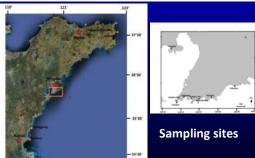
Morphology

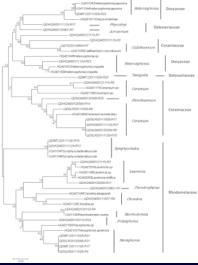
Chondrophycus intermedius

Prof. Yunxiang Mao yxmao@ouc.edu.cn

Ceramium kondoi

Ulva laetevirens

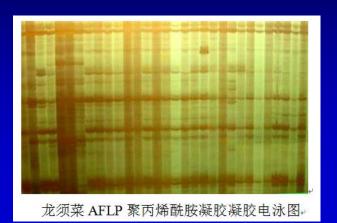

Sargassum horneri

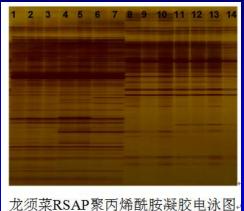


Gelidium japonicum

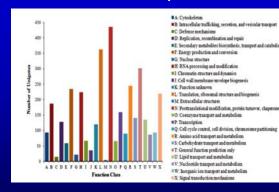
DNA barcoding

Specimen_voucher	No.	Species	Lat_Lon	date	Country	orf frame
JZW-20111118-1	KC411833	Ulva australis	36.40N 120.17E	18-Nov-11	China	18-903
JZW-20111118-3	KC411834	Ulva australis	36.40N 120.17E	18-Nov-11	China	14-898
JZW-20111118-4	KC411835	Codium fragile	36.40N 120.17E	18-Nov-11	China	14-899
JZW-20111118-5	KC411836	Ulva laetevirens	36.40N 120.20E	18-Nov-11	China	30-829
JZW-20111118-6	KC411837	Ulva australis	36.40N 120.20E	18-Nov-11	China	32-815
JZW-20111118-8	KC411838	Ulva flexuosa	36.40N 120.20E	18-Nov-11	China	12-816
HQW-20110902-1	KC411839	Ulva flexuosa	36.30N 120.20E	2-Sep-11	China	6-832
HQW-20110902-2	KC411840	Ulva flexuosa	36.30N 120.20E	2-Sep-11	China	288-815
HQW-20110902-3	KC411841	Ulva australis	36.30N 120.20E	2-Sep-11	China	242-769
HQW-20110902-4	KC411842	Ulva laetevirens	36.30N 120.20E	40788	China	291-818
HQW-20110902-5	KC411843	Ulva australis	36.30N 120.20E	2-Sep-11	China	268-800
HQW-20110902-6	KC411844	Ulva flexuosa	36.30N 120.20E	2-Sep-11	China	24-836
JZW-20111215-1	KC411845	Codium fragile	36.40N 120.17E	15-Dec-11	China	43-851
JZW-20111215-2	KC411846	Ulva linza	36.40N 120.17E	15-Dec-11	China	67-875
JZW-20111215-3	KC411847	Ulva australis	36.40N 120.17E	15-Dec-11	China	44-853
HQW-20110710-1	KC411848	Ulva prolifera	36.30N 120.20E	10-Jul-11	China	22-872
TWL-20110412-1	KC411849	Monostroma arcticum	36.30N 120.24E	12-Apr-11	China	60-871


NJ tree of UPA sequences of Ceramiales (Red algae)


Sequences No. of Gene Bank

Studies on the genetic diversity and genetic breeding of Gracilariaceae species


Prof. Zhenghong Sui suizhengh@ouc.edu.cn

Different molecular markers were exploited to elucidate the genetic diversity of Gracilariaceae species, such as AFLP,RSAP, SSR and SNP techniques.

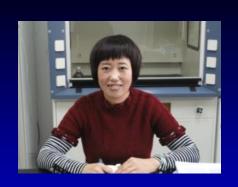
Genetic analysis and molecular marker assistant breeding was used during the development of cultivar with outstanding traits.

Cultivation and conservation of seweed

Hybridization and selection of Laminaria
The largest alga culture in the world

Prof. Tao Liu liutao@ouc.edu.cn

The germplasm conservation of seaweed



Eucheuma Kappaphycus

4. Seaweed molecular pathology

Prof. Gaoge Wang liutao@ouc.edu.cn

Contact information: gaogewang@hotmail.com wgaoge@ouc.edu.cn

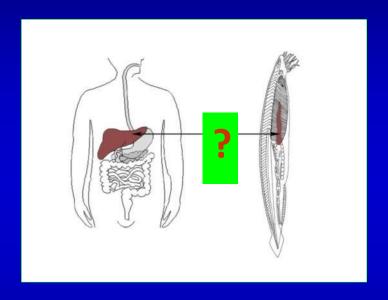
Interactions of pathogenic bacteria and economically cultivated alga Saccharina japonica, including:

- -- Identifying the pathogenic bacteria or virulence of *S. japonica* diseases.
- -- Investigating the mechanism of defense responses caused by pathogenic bacteria or virulence

S. japonica

Sporeling nursery

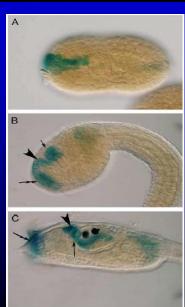
Disease outbreaks at two stages

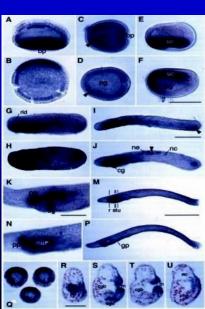


Adult diseased sporophytes near the harvest time

II. Evolution and tissue engineering

1. Comparative and developmental immunology of marine


animals -- using Amphioxis as model



Through comparative analysis of conserved sequences, expression and functions of genes to study the origin of human organs and tissues

Prof. Shicui ZHANGE-mail: sczhang@ouc.edu.cn

2. Marine fish cytotechnology and tissue engineering

Research interests:

- Marine fish cytotechnology
- Human corneal tissue engineering
- Innate immunology of marine invertebrates

Prof. Tingjun Fan

Tel: +86-532-82031637

Email: tjfan@ouc.edu.cn

Achievements:

- Established 17 tissue cell lines from marine fish, and performed intensive investigations in cell-virus interaction, transgenic and vaccine;
- Constructed various kinds of human corneal tissues from nontransformed human corneal cells and scaffold including fish collagen composite scaffold, which could maintain corneal clarity in various animal models;
- Characterized the properties of phenoloxidase from various marine invertebrates, mechanisms involved in immunostimulants and endocrine disruptors.

III. Marine natural products and biomaterials

Research properties: focus on the development of marine bioactive substance, from biochemical, molecular mechanism, cellular level to animal model, establish the technological system for the development and industrialization of marine biomedical materials.

- Marine biomaterials
- Marine enzyme
- ■Marine biological and biochemical products

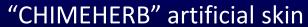
1. Biomedical materials based on chitin and chitosan

Prof. Boqin Han

Tel: +86-532-82032105

E-mail: baoqinh@ouc.edu.cn

chitosanase

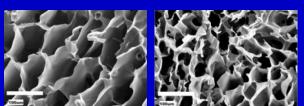

Chitosan oligosaccharide

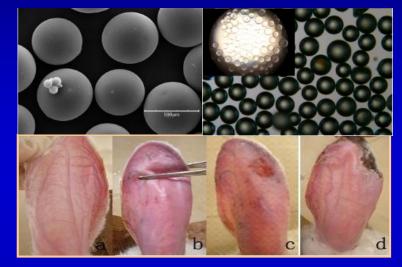
'HAIMING" ointment

Hemostatic material

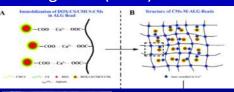
for treatment of skin burn

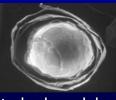
Prof. Xiguang Chen xgchen@ouc.edu.cn

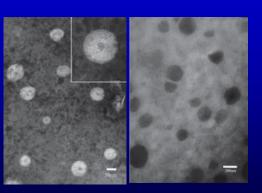


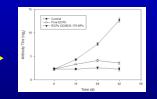


Liquid swellable chitosan fiber



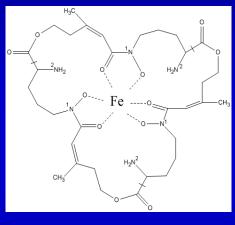

Hydroxybutyl chitosan Thermo-sensitive hydrogel Wang et al. (2013) J Mater Sci, 48


Chitosan microspheres as potential embolic agent Zhou et al. (2014) Carbohydr Polym, 113

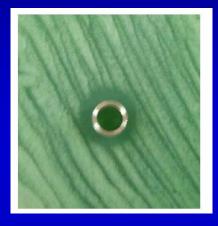


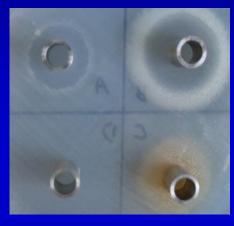
oral delivery. Feng et al (2014) Biomacromolecules, 15

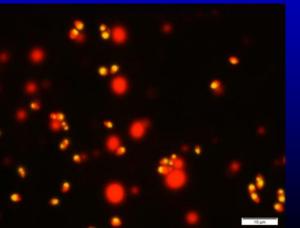
Multilayer alginate hydrogel beads for Multilayer HA-transfersome for transdermal delivery. Kong et al. (2015) Chem Commun, 51


Oleoyl-carboxymethy-chitosan nanoparticles for oral vaccine delivery Liu et al (2012) Carbohydr Polym, 89

2. Bioactive substances from marine yeasts


Prof. Zhen-Ming Chi E-mail: chi@ouc.edu.cn


Production and metabolic regulations of bioactive substances from marine yeasts

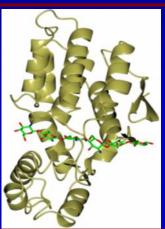

Siderophore

Killer toxin

Antimicrobial activity

Lipid and alkanes produced by marine yeasts

Polymalate produced by marine yeasts


3. Marine Enzymes: Basic and Applications Research

Research Interests

Prof. Weizhi Liu: liuweizhi@ouc.edu.cn

- 1). Novel polysaccharides degrading enzyme and their application in the generation of oligosaccharide.
- 2). Adhesive proteins/enzyme and their application in medical adhesive material area.
- 1.Determination of the first chitosanase-substrate complex. (PDB: 4OLT, 4QWP)

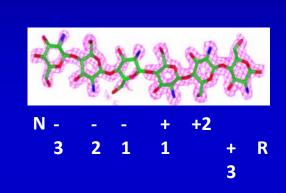
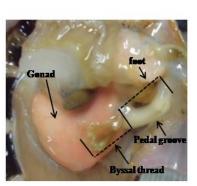
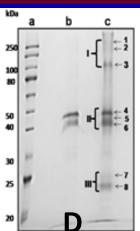



Fig 1. The first crystals of the chitosanase OU01-substrate complex and the degradation mechanism


Lyu Q, et al, Biochemical Journal (2014); BBA- General Subjects, 2015

2. Adhesive proteins derived from scallop byssus was analyzed in the first time, which will facilitate the development of new medical adhesive material.

Fig 2. Scallop byssal protein

(A-C: The morphology photos of scallop byssus; D: The whole extracted scallop byssal protein) Miao Y, et al, Mar Biotechnol (NY). 2015

IV Marine Ecology and Biological Oceanography

1. Anthropogenic effects on marine ecosystems

Prof. Xuexi Tang: E-mail: tangxx@ouc.edu.cn

The lab's research is focused on low-trophic level organisms to address questions related to water, pollutant and climate. We use quantitative and experimental approaches to elucidate the importance of biotic and abiotic factors influencing different biota' dynamics in both field and laboratory-settings.

Research interests

Marine environmental

1. Experimental eco-toxicology: The typically marine environmental pollutants on low-trophic biota: effects, mechanisms and biomarkers

2. Field studies: Comprehensive investigation and feature evaluation on the coastal China

3.Bio-restoration aiming at the degraded seaweed bed using macroalgae and seagrass

The goal of much of the work is to understand and predict interactions between water systems, climate change, and ecosystem function and services in estuaries and coasts, and to elucidate the possible ecological mechanism involving in the process.

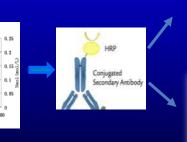
2. Ecotoxicological effect of endocrine disrupting chemicals in coastal waters

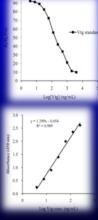
Prof. Shaoguo Ru

Email: rusg@ouc.edu.cn

Research Area

- ➤ Ecotoxicological effect and underlying mechanisms of endocrine disrupting chemicals
- ➤ Development and application of biological detection method for endocrine disrupting chemicals
- ➤ Ecological risk assessment of endocrine disrupting chemicals on the marine fishery resource populations



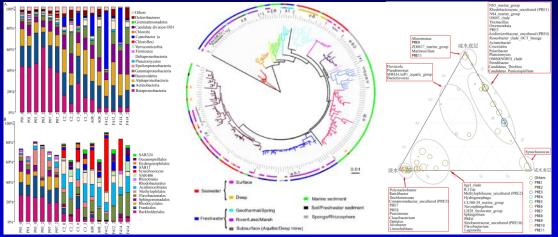

flounder

\$2 200 | \$2

3. Microbial oceanography

Research Interests

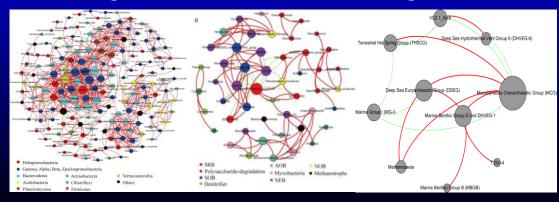
- Microbial community structure and co-occurrence patterns in typical sea areas
- Roles of microbes in biogeochemical cycles
- Adaptation mechanisms of marine microorganisms
- Quorum sensing and quorum quenching of marine bacteria
- Cultivation of novel marine bacteria



Prof. Xiao-Hua Zhang

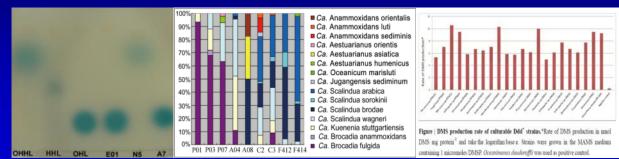
xhzhang@ouc.edu.cn

1) Microbial community structure in typical sea areas


 Different areas of Chinese marginal seas harbor distinctive microbial community structures, which were controlled by different environmental factors.

Liu et al. 2014. FEMS Microbiol Ecol; Liu et al. 2015. Microb Ecol.

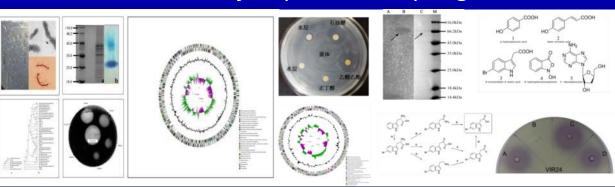
2) Microbial co-occurrence patterns


- Microbial co-occurrence patterns in sediments of Chinese marginal seas;
- SRB and SOB, SRB and nitrite-oxidizing bacteria, nitrogen fixation and denitrifying bacteria had significant correlation at marginal sea sediments.

Liu et al. 2014. Syst Appl Microbiol

3) Roles of microbes in biogeochemical cycles

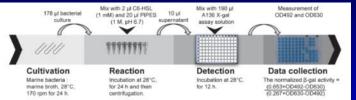
- Bacterial quorum sensing in regulation of particulate organic carbon degradation;
- Anammox bacteria in the Pearl Estuary and the impact of environmental factors;
- DMSP catabolism by bacteria isolated from East China Sea.

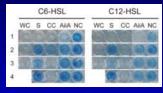

Todd et al., 2017, Nature Microbiology; Abdul et al., 2015, FEMS Microbiol Ecol; Fu et al., 2015, JGR-Oceans.

4) Adaptation mechanisms of marine bacteria

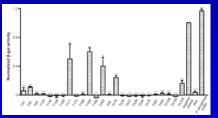
 Polysaccharide degradation properties of Catenovulum agarivorans adapting to eutrophic environments

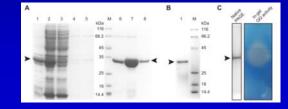
Competitive properties of Pseudoalteromonas flavipulchra adapting to various


adverse environments

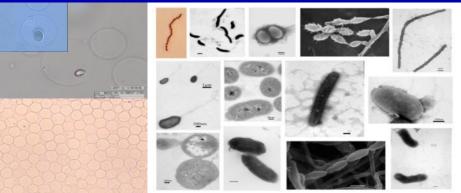


Shi et al., 2012. J Bacteriol; Cui et al., 2014. Mar Drug; Yu et al., 2013. BMC Genomics


5) Quorum sensing and quenching of marine bacteria


- Established a sensitive and high-throughput method for identifying QQ bacteria
- Identified a novel marine AHL lactonase MomL

Tang et al., 2013. Sci Rep; Tang et al., 2014. Appl Environ Microbiol

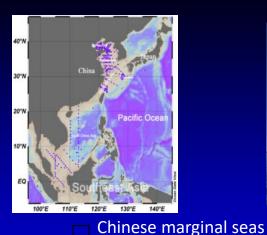


6) Cultivation of novel marine bacteria

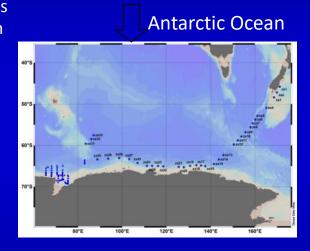
- Established a new high-throughout cultivation method for marine bacteria
- Published 30 novel bacteria, including 10 novel genera and 20 novel species
- Established a culture collection center (Marine Culture Collection, Ocean

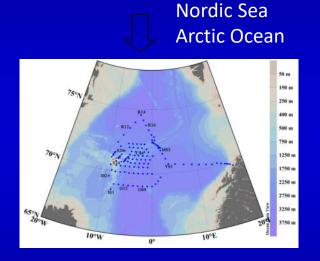
University of China, MCCO)

Website: http://iunh.v099.10000net.cn/bio/index.jsp

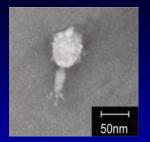

4. Diversity and Ecology of Virioplankton, Pico-, Nano-, and Micro-plankton

Prof. Min Wang, mingwang@ouc.edu.cn


Asso. Prof. Yong Jiang, yongjiang@ouc.edu.cn

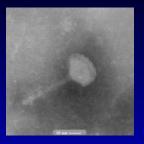


to deep Pacific Ocean



Research Interests:

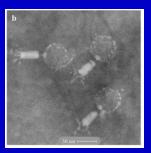
- 1) Abundance of microbial populations and their relationship with environmental parameters
- 2) Diversity of viroplankton and its relationship with environmental parameters;
- 3) Marine phage isolation and characterization
- 4) Diversity of picoeukaryote community and its relationship with environmental parameters


Marine phage Isolation and Characterization

H188, Myovirida

Host: Vibrio kanaloa

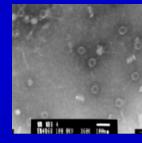
50,364 bp, 76 ORFs.



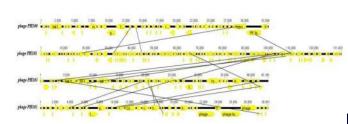
PHq0, Siphoviridae

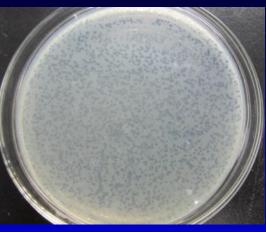
Host: Pseudoalteromonas

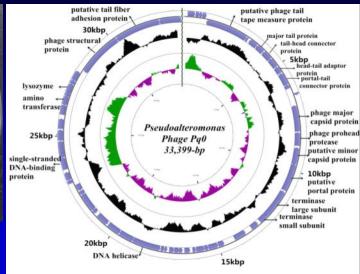
33,399-bp, 56ORFs

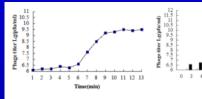

(Wang et al. 2015. Curr Microbiol. DOI:10.1007/s00284-015-0919-2)

PH101, Myoviridae


Host:Pseudoalteromonas

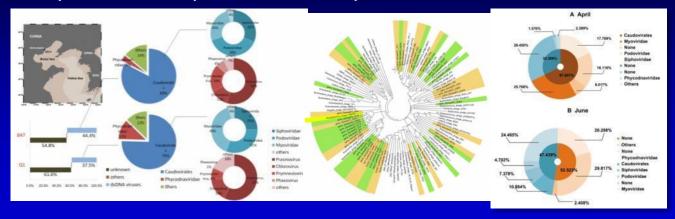

131,903bp, 228 ORFs


H103, Siphoviridae Host: *Pseudoalteromonas* 43,190bp, 75 ORFs

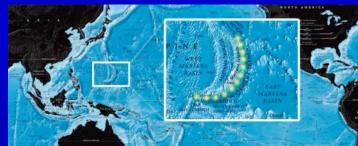

(Wang et al. 2015. Curr Microbiol, DOI 10.1007/s00284-015-0896-5.)

Bacteriophage plaque of PH103

Due-step growth curve of phage PH101. Fig. 4 pH stability of phage PH1
Table 4 Phages with common genes with <u>Pseudoalisromonus</u> Phage PH101 by BLASTP (e < 10°)

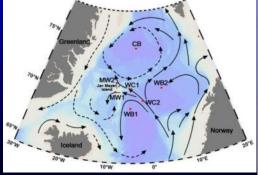

Phage name	Phage family	Genome length (bp)	GenBank accession number	Common genes with PH101
Shewanella sp. phage 1/4	Myoviridae	133824	NC_025436	30
Shewanella sp. phage 1/40	Myoviridae	139004	NC_025470	21
Salmonella phage PVP-SE1	Myoviridae	145964	NC_016071	11
Vibrio phage ICP1	Myoviridae	125956	NC_015157	19
Vibrio phage helene 12B3	unclassified	135982	NC_021067	16
Vibrio phage PWH3a-P1	unclassified	129155	NC_020863	14
Cronobacter phage CR9	Myoviridae	151924	NC_023717	10
Citrobacter phage Moogle	Myoviridae	87999	KM236239	9
Cronobacter phage CR3	Myoviridae	149273	NC_017974	9
Cronobacter phage CR8	Myoviridae	149126	NC_024354	7
Enterobacteria phage phi92	Myoviridae	148612	NC_023693	10
Escherichia phage EC6	Myoviridae	86231	JX560968	9

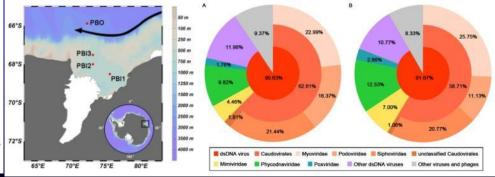
ORF	Start	Stop	Stra nd	Function	Conserved domain	Conserved domain accession
8	4114	5472	+	Phage structural protein	DUF3383	pfam11863
9	5490	5978	+	hypothetical protein	DUF3277	pfam11681
12	6743	8050	+	hypothetical protein	HemX superfamily	d19375
14	9672	10358	+	HNH homing endonuclease	HNHc superfamily	pfam13392
19	13478	14182	+	hypothetical protein	VgrG	COG3501
23	16219	17139	+	hypothetical protein	DUF2612 superfamily	pfam11041
24	17154	19409	+	hypothetical protein	SGNH_hydrolase	cd00229
37	29299	26828	-	DNA polymerase I	DNA_pol_A superfamily	pfam00476
38	31308	29296	-	T7-like phage primase	GP4d_helicase	cd01120
51	35370	35714	+	hypothetical protein	PLN02197	PLN02197
55	36291	36803	+	hypothetical protein	LT_GEWL	cd00254
62	39678	40169	+	hypothetical protein	PRK06508	PRK06508
68	42548	43498	+	Phage-associated homing endonuclease	HNHc	cd00085
69	43783	44268	+	Phage protein	AP2	cd00018
75	46389	47234	+	Ribose-phosphate pyrophosphokinase	PRTases_typeI	cd06223
76	47221	47784	+	HNH homing endonuclease	HNH_3	pfam13392
77	47787	49340	+	Nicotinamide phosphoribosyltransferase	PBEF_like	cd01569
81	52586	53092	+	Endonuclease V	Pyr_excise	pfam03013
85	54255	54446	+	hypothetical protein	TopolIA_Trans_ScTopolIA	cd03481
103	63736	63089	-	hypothetical protein	HNHc	cd00085
106	64953	64168	-	Adenine-specific methyltransferase	AdoMet_MTases	cd02440
119	69979	69050	-	hypothetical protein, PREDICTED	Laps	pfam10169

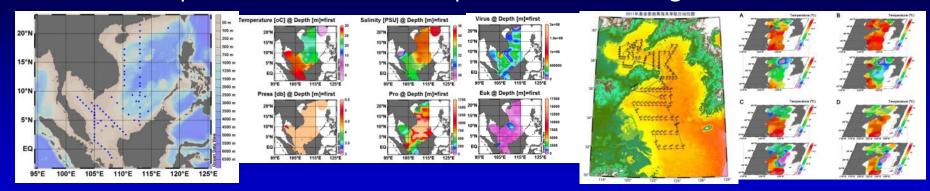

Metagenomic diversity of the viroplankton

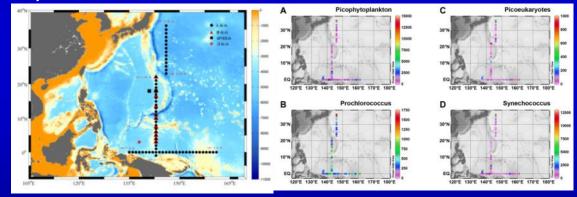

The Metagenomic diversity of the virioplankton in response to Red Tide in

aquaculture zone

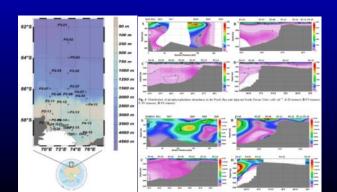



Distribution of Viral Communities in the Mariana Trench

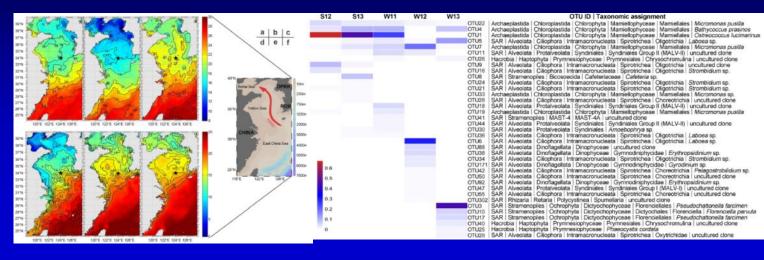

Viral Diversity in Polar region

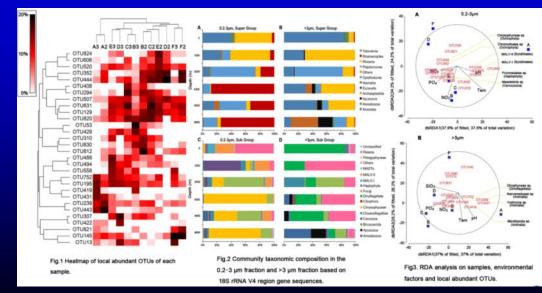


Distribution of viroplankton and pico-plankton


Seasonal and spatial distribution of virioplankton in the Marginal Seas of China

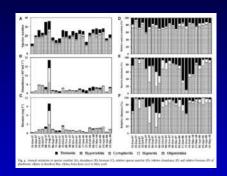
Distribution of viroplankton pico-plankton in Pacific Ocean


Distribution of marine viruses and their potential hosts in Prydz Bay and adjacent Southern Ocean, Antarctic

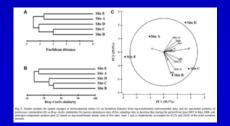

Diversity of eukaryote community

Community composition of eukaryotes in response to changes in the Yellow Sea Warm

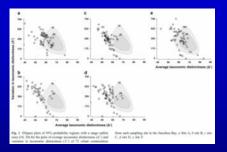
Current


Diversity of eukaryotic community in the Mariana Trench

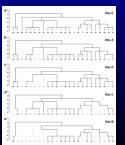
Community study of planktonic ciliated in coastal area


Seasonal variation of planktonic ciliate communities

Jiang et al. (2011) Journal of the Marine Biological Association of the United Kingdom


Using spatial pattern of planktonic ciliate communities as indicators to assess water quality

Jiang et al. (2011) Marine Pollution Bulletin


Application of taxonomic relatedness for bioassessment using ciliates

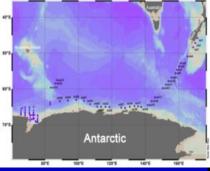
Jiang et al. (2012) Environmental Science and Pollution Research; Xu et al. (2011)

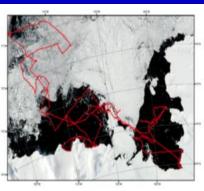
Discriminating EQS using the taxonomic relatedness with in a small pool of planktonic ciliates

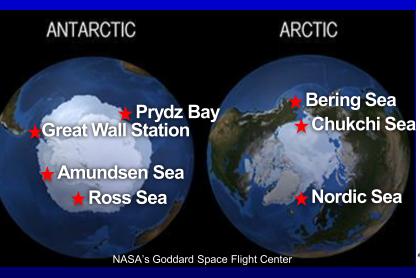
Jiang et al. (2014) Science of the Total Environment

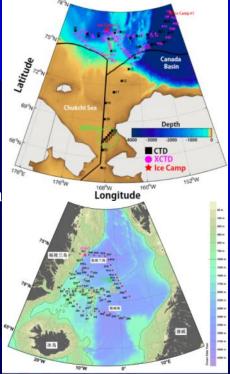
Community study of plagic ciliated microzooplankton in bipolar

R/V Xuelong's Track (2014–2016)






R/V Araon's Track (2010–2016)



Jiang et al. (2013) Ecological Indicators; Jiang et al. (2014) Progress in Oceanography; Jiang et al. (2015, 2016) Deep-Sea Research Part II; Jiang et al. (2017) Polar Biology

5. Ecological functions of benthos

Members

Professors:

Prof. Zhang Zhinan (ZZN)

Prof. Zhou Hong (ZH)

hzhou@ouc.edu.cn

Associate Professors:

Dr. Yu Zishan (YZS)

Yu_zishan@ouc.edu.cn

Dr. Mu Fanghong (MFH)

fanghongmu@ouc.edu.cn

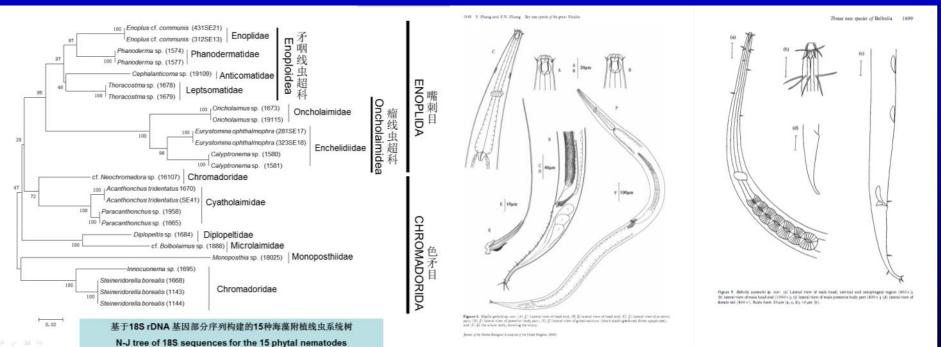
Dr. Liu Xiaoshou (LXS)

liuxs@ouc.edu.cn

Dr. Hua Er (HE)

huaer@ouc.edu.cn

20 Postgraduate students


Research Interests

- Biodiversity of benthos (temperate, subtropical, tropical and polar areas)
- Secondary production of benthos
- Benthic food web dynamics
- Benthic-pelagic coupling
- Effects of marine pollution on benthic community
- Effects of ocean acidification on benthos
- Benthic size spectra
- Taxonomy of marine meiofauna
- DNA barcoding for marine nematodes

Field Sampling for Benthos

CLUSTER of macrofaunal community

N-J tree of 18S sequences for the 15 phytal nematodes

New species of marine nematodes

cooperation partner

Bahamas Agriculture and Marine Science Institute (BAMSI)

UNIVERSITY OF CALIFORNIA

Welcome to OUC

